Extremal metrics on the total space of destabilising test configurations
نویسندگان
چکیده
Abstract We construct extremal metrics on the total space of certain destabilising test configurations for strictly semistable Kähler manifolds. This produces infinitely many new examples manifolds admitting metrics. It also shows such a phenomenon jumping complex structure along fibres.
منابع مشابه
the washback effect of iranian schoolleaving test of english on students learning
هدف از ای پایان نامه بررسی تا ثیر ازمون نهایی زبان انگلیسی سال سوم دبیرستان برروی یادگیری دانش اموزان ایرانی است. هدف اشلی این مطالعه بررسی خود این ازمون و تا ثیر ان برروی یادگیری دانش اموزان است. برای رسیدن به این هدف شیوه های تحقیقاتی مختلفی برای جمع اوری و تحلیل داده ها به کار برده شده است. ابزارهای اصلی این تحقیق شامل مصاحبه با دانش اموزان دختر سال سوم (10 نفر) و همچنین مشاهده ی 6 کلاس زبان...
the effect of functional/notional approach on the proficiency level of efl learners and its evaluation through functional test
in fact, this study focused on the following questions: 1. is there any difference between the effect of functional/notional approach and the structural approaches to language teaching on the proficiency test of efl learners? 2. can a rather innovative language test referred to as "functional test" ge devised so so to measure the proficiency test of efl learners, and thus be as much reliable an...
15 صفحه اولOn the Kähler Classes of Extremal Metrics
Let (M,J) be a compact complex manifold, and let E ⊂ H1,1(M,R) be the set of all cohomology classes which can be represented by Kähler forms of extremal Kähler metrics, in the sense of Calabi [3]. Then E is an open subset. ∗Supported in part by NSF grant DMS 92-04093. †Supported in part by NSF grant DMS 90-22140.
متن کاملExtremal Metrics on Graphs I
We define a number of natural (from geometric and combinatorial points of view) deformation spaces of valuations on finite graphs, and study functions over these deformation spaces. These functions include both direct metric invariants (girth, diameter), and spectral invariants (the determinant of the Laplace operator, or complexity; bottom non-zero eigenvalue of the Laplace operator). We show ...
متن کاملExtremal statistics on non-crossing configurations
We analyze extremal statistics in non-crossing configurations on the n vertices of a convex polygon.We prove that themaximumdegree and the largest component are of logarithmic order, and that, suitably scaled, they converge to a well-defined constant. We also prove that the diameter is of order √ n. The proofs are based on singularity analysis, an application of the first and second moment meth...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematische Annalen
سال: 2023
ISSN: ['1432-1807', '0025-5831']
DOI: https://doi.org/10.1007/s00208-023-02601-1